微波加热原理:
微波烧结是利用微波加热来对材料进行烧结。它同传统的加热方式不同。传统的加热是依靠发热体将热能通过对流、传导或辐射方式传递至被加热物而使其达到某一温度,热量从外向内传递,烧结时间长,也很难得到细晶。
1、材料中的电磁能量耗散
材料对微波的吸收是通过与微波电场或磁场耦合,将微波能转化热能来实现的。黄向东等利用麦克斯韦电磁理论,分析了微波与物质的相互作用机理,指出介质对微波的吸收源于介质对微波的电导损耗和极化损耗,且高温下电导损耗将占主要地位。在导电材料中,电磁能量损耗以电导损耗为主。而在介电材料(如陶瓷)中,由于大量的空间电荷能形成的电偶极子产生取向极化,且相界面堆积的电荷产生界面极化,在交变电场中,其极化响应会明显落后于迅速变化的外电场,导***化弛豫。此过程中微观粒子之间的能量交换,在宏观上就表现为能量损耗。
2、微波促进材料烧结的机制
研究结果表明,微波辐射会促进致密化,促进晶粒生长,加快化学反应等效应。因为在烧结中,微波不仅仅只是作为一种加热能源,微波烧结本身也是一种活化烧结过程。M.A.Janny等首先对微波促进结构的现象进行了分析,测定了高纯Al2O3烧结过程中的表观活化能Ea,发现微波烧结中Ea仅为170kj/mol,而在常规电阻加热烧结中Ea=575kj/mol,由此可推测微波促进了原子的扩散。M.A.Janny等进一步用18O示踪法测量了Al2O3单晶的扩散过程,也证明微波加热条件下扩散系数高于常规加热时的扩散系数。S.A.Freeman等的实验结果表明,微波场具有增强离子电导的效应。认为高频电场能促进晶粒表层带电空位的迁移,从而使晶粒产生类似于扩散蠕动的塑性变形,从而促进了烧结的进行。
Birnboin等分析了微波场在2个相互接触的介电球颗粒间的分布,发现在烧结颈形成区域,电场被聚焦,颈区域内电场强度大约是所加外场的10倍,而颈区空隙中的场强则是外场的约30倍。并且,在外场与两颗粒中心连线间0°~80°的夹角范围内,都发现电场沿平行于连线方向极化,从而促使传质过程以极快的速度进行。另外,烧结颈区受高度聚焦的电场的作用还可能使局部区域电离,进一步加速传质过程。这种电离对共价化合物中产生加速传质尤为重要。上述研究结果表明,局部区域电离引起的加速度传质过程是微波促进烧结的根本原因。
烧结炉的微波烧结技术的关键是微波加热,其原理是物质在微波作用下发生电子极化、原子极化、界面极化、偶极转向极化等方式,将微波的电磁能转化为热能。
烧结炉的微波烧结的特点是:
1、可显著降低烧结温度,***大幅度可达500。C;
2、大幅降低能耗,节能高达7O一9O%;
3、缩短烧结时间,可达5O%以上;
4、显著提高组织致密度、细化晶粒、改善材料性能;
5、工艺精确可控,产品一致性好,品质稳定。
本文是【http://www.sigmayq.com 真空烧结炉,真空热处理炉,真空炉,气氛炉,实验炉,箱式炉,管式炉,电炉,加热炉-洛阳西格马炉业股份有限公司】原创,转载时请务必以链接形式注明作者和出处
地 址:http://sigmayq.com/home-newsinfo-id-53.html